AutoLimit - A Practical Bi-Level Approach to
Resource Management for SLO-Targeted
Microservices

Hasan Masum - 0424052018
Department of Computer Science & Engineering
Bangladesh University of Engineering & Technology
masumbuetcse 18 @gmail.com

Abstract—The efficient management of resources in microser-
vices while maintaining Service Level Objectives (SLOs) is crucial
for modern applications. Overprovisioning, while reducing the
risk of SLO violations, often leads to resource wastage and in-
creased operational costs. This paper presents a bi-level resource
management strategy, extending the work of Autothrottle, to
address these challenges by optimizing memory allocation while
meeting SLOs. At the microservice level, we introduce Captain,
a lightweight resource controller that adjusts CPU allocations
based on CPU throttles, a metric highly correlated with latency.
At the higher level, Tower, the centralized feedback controller,
dynamically sets performance targets using a contextual bandit
algorithm, adjusting for varying workloads. On each Captain,
we set heuristic-based rules to scale up or scale down the
memory limit of services. Through this optimization, we reduce
the memory limit by 50.6% - 60.3%. Our contribution aims
to reduce resource wastage while ensuring SLO compliance,
providing an adaptive, scalable solution for resource management
in SLO-targeted microservices.

Index Terms—SLO, Resource Management, CPU Throttle
Ratio, Memory Limit

I. INTRODUCTION

Resource management of SLO-targeted microservices is an
important topic of research in distributed computing systems.
A microservice is an architectural style that structures an
application as a collection of small, autonomous services,
each designed to handle a specific business function. These
services communicate with each other using lightweight pro-
tocols, often over a network. Over the past few years, there
has been a significant shift from monolithic architectures to
microservices, driven by their ability to support flexible, scal-
able, and resilient application designs [1]-[5]. By decoupling
functionalities, microservices enable teams to develop, deploy,
and scale different parts of an application independently.

To ensure a seamless end-user experience, many latency-
sensitive, user-facing applications impose Service Level Ob-
jectives (SLOs). An SLO is a specific, measurable target
that defines the expected level of service performance, such
as response time, availability, or throughput, often agreed
upon between service providers and consumers. However,

We are thankful to Dr. Abdullah Adnan Sir for his guidance.

Mahdee Mushfique Kamal - 0424052064

Department of Computer Science & Engineering
Bangladesh University of Engineering & Technology
mahdee.m.kamal @ gmail.com

SLO violations can lead to poor user experiences, reduced
customer satisfaction, and potential financial or reputational
losses for service providers. These violations often arise due
to inadequate resource allocation, unpredictable workloads, or
failures in the underlying infrastructure.

To mitigate the risk of SLO violations, many cloud
providers and organizations resort to overprovisioning their
infrastructure. This approach involves allocating significantly
more resources—such as CPU, memory, and storage—than
what is typically required to handle peak demand or un-
expected workload spikes. While this strategy reduces the
likelihood of SLO breaches, it comes at a substantial cost.

The primary issue with overprovisioning is resource
wastage. Allocating idle or underutilized resources leads to
inefficiencies, increasing operational costs without delivering
proportional benefits [6]], [7]. For instance, servers or vir-
tual machines often operate at a fraction of their capacity
during non-peak hours, contributing to unnecessary energy
consumption and maintenance costs. Previous studies have
shown that substantial savings can be achieved by harvesting
or reclaiming excess resources for co-located applications in
multi-tenant environments [[8]]—[/13]].

This research seeks to address these challenges by proposing
strategies to minimize resource usage while avoiding SLO
violations. By optimizing resource allocation and manage-
ment, we aim to improve the efficiency and sustainability of
microservice-based distributed systems.

Previous efforts have proposed various strategies to ad-
dress these challenges. For example, Sinan [[14]] employs a
machine learning (ML)-based approach to achieve QoS-aware
resource management for cloud microservices, showcasing the
potential of ML techniques to dynamically allocate resources
while maintaining service-level objectives. Adaptive resource-
efficient deployments across the cloud-edge continuum have
been studied in works like Fu et al. [15]. Similarly, Zhou et
al. [16] and Wen et al. [17] focus on QoS-aware and SLO-
aware resource configurations for serverless workflows. Other
notable contributions include ERMS [18]], which emphasizes
efficient resource management with SLA guarantees, and
GRAF [19], which utilizes graph neural networks for proac-

tive resource allocation. Furthermore, autoscaling mechanisms
with QoS assurance, as demonstrated by Hossen et al. [20],
and fine-grained intelligent frameworks such as FIRM [21]
provide insights into optimizing microservice performance.

The gaps in state-of-the-art research are as follows. ML-
based solutions have gained attention due to their ability
to dynamically adjust resource allocations based on patterns
learned from data. However, they come with their own set of
challenges:

e Training and retraining costs are substantial, especially
for complex applications. For instance, training a model
for a 28-microservice application can take over /4 hours,
making it impractical for real-time use.

o There is no strong correlation between end-to-end system
performance and per-service resource usage, making it
difficult to accurately predict and optimize overall system
behavior based on individual service metrics.

As a result, solutions based on Boosted Trees, Convolu-
tional Neural Networks, or Graph Neural Networks remain
ineffective, highlighting the necessity for a lightweight online
algorithm that requires less training time. On the other hand,
existing solutions for resource management in microservices
can be broadly categorized into two types:

o Centralized control with a global view of service topol-
ogy, where a central controller manages resources across
all microservices based on the complete topology of the
system. While this approach can offer comprehensive
management, it often introduces scalability challenges
and lacks adaptability to dynamic, real-time conditions.

o Per-service heuristics with operator-defined rules, which
rely on predefined strategies for managing individual
services. These solutions often fail to adapt to evolving
workloads or complex service interactions, leading to
suboptimal resource allocation.

These gaps highlight the need for more efficient, adaptive
resource management strategies that can overcome the limi-
tations of both centralized control and per-service heuristics-
based approaches.

To address this issue, Wang et al. introduced Autothrottle,
a practical bi-level tool to manage resources for SLO-targeted
microservices. Autothrottle introduces an innovative approach
to resource management for SLO-targeted microservices by
combining local and centralized control mechanisms. The
primary contribution of Autothrottle lies in its use of a bi-
level resource management strategy, which efficiently balances
the need for real-time, low-overhead adjustments with the
goal of meeting end-to-end SLOs. At the microservice level,
Captain, the lightweight resource controller, ensures that each
microservice adheres to its performance target by adjusting
CPU allocations through OS APIs, such as CPU quotas in
Linux’s cgroups. This fine-grained, local control is based on
an unconventional metric—CPU throttles, which represent the
number of times a service exceeds its CPU quota within a
given time period. By tracking CPU throttles, Autothrottle
benefits from a metric that is both inexpensive to sample at

high frequency and highly correlated with latency, making it
an effective proxy for SLO compliance. These characteristics
enable Captain to make timely, cost-effective adjustments
without introducing significant overhead. On a higher level,
Tower, the centralized SLO feedback controller, aggregates
information from across the application and learns to identify
optimal performance targets. Using a contextual bandits algo-
rithm, Tower dynamically determines the most cost-effective
performance targets that satisfy the SLO, adjusting for varying
workloads measured by requests per second (RPS). This
centralized learning mechanism allows Autothrottle to adapt
to changing application demands while minimizing resource
wastage. Overall, the contribution of Autothrottle is twofold:
first, it introduces a highly efficient and scalable method for
managing resource allocation at the microservice level, and
second, it integrates a lightweight online learning algorithm to
optimize performance targets for the entire system, ensuring
that SLOs are met in a cost-effective manner.

However, Autothrottle doesn’t manage memory allocation.
In their implementation, a single service can consume as much
memory as possible. To address this issue, we extend the
work of Autothrottle. We implement a heuristic-based memory
management approach. Here, given a target memory ratio and
the Captain auto-scales to conserve it’s memory limit. This
optimization achieves a memory limit reduction of 50.6% to
72.3%.

The rest of the paper is organized as follows. In Section [II}
we discuss the work of commonly used or prominent works
in detail. In Section we provide the methodology and
implementation of our work. In Section we discuss the
results. Finally, Section [V] presents the conclusion.

II. BACKGROUND AND RELATED WORK

In this section, we review the methodologies and imple-
mentations of several widely used tools and frameworks for
resource management in microservices, focusing on Kuber-
netes AutoScaler, the machine learning-based tool Sinan, and
the bi-level tool Autothrottle.

A. Kubernetes Default Autoscalers

Kubernetes offers a default autoscaling mechanism for man-
aging resource allocation across microservices. The K8s-CPU
autoscaler locally maintains the average CPU utilization for
each service, using a user-specified CPU utilization threshold
(e.g., 50%) to determine when to adjust resource allocation.
The autoscaler works by periodically measuring each service’s
CPU utilization at fixed intervals.

In the standard K8s-CPU configuration, the autoscaler mea-
sures CPU utilization every 15 seconds (denoted as m = 15
seconds). If the CPU utilization exceeds the threshold, the
system adjusts the CPU limit by setting it to the largest value
allocated in the last 300 seconds (denoted as s = 300 seconds),
thus ensuring that the service has sufficient resources to handle
high demand periods. This approach, while effective for basic
CPU scaling, may not capture rapid fluctuations in resource

demands and can lead to overprovisioning, especially when
workloads change unexpectedly.

A faster variant, K8s-CPU-Fast, reduces the measurement
period to m = 1 second and shortens the allocation window
to s = 20 seconds. This modification allows the autoscaler
to respond more rapidly to changes in CPU usage, enabling
more dynamic scaling. However, the increased frequency of
measurements and the shorter time window for allocation
also introduce the potential for more frequent and possibly
unnecessary resource adjustments, which could impact system
performance and efficiency.

While the K8s-CPU autoscalers provide basic resource
scaling, they rely heavily on fixed thresholds and historical
averages, which may not always align with the dynamic nature
of modern microservice workloads. Additionally, they primar-
ily focus on CPU utilization, potentially overlooking other
critical factors such as memory usage, latency, or application-
specific SLOs. Consequently, these default autoscalers may not
be sufficient for complex, latency-sensitive microservices that
require more nuanced resource management strategies.

In memory-based autoscaling, the system checks the aver-
age memory utilization of all the pods in a deployment and
increases or decreases the number of replicas based on the
utilization levels. If the average memory utilization is above
a specified threshold, the system will add more replicas to
handle the increased load. Conversely, if the average memory
utilization is below the threshold, the system will remove
replicas to save resources.

For REST microservices, memory utilization is a critical
metric, as these services tend to be memory-intensive. The
autoscaling of memory utilization for REST microservices can
be managed by setting the desired memory utilization per-
centage and the minimum and maximum number of replicas
in the deployment. Memory-based autoscaling is particularly
suitable for memory-intensive applications, as it provides a
more accurate representation of resource utilization compared
to CPU-based scaling. By directly accounting for memory
usage, it helps optimize resource allocation for applications
that are heavily I/O bound. However, memory-based autoscal-
ing can be more complex to set up, requiring a deeper
understanding of an application’s memory needs. Additionally,
memory utilization is harder to monitor and measure than CPU
usage, making it more challenging to ensure that autoscaling
is functioning effectively.

B. Sinan

Sinan is a Machine Learning-based and QoS-Aware Re-
source Management system for Cloud Microservices. It pre-
dicts end-to-end latency and the probability of QoS violations
using machine learning models, based on the system’s state
and historical data. The operation of Sinan involves the fol-
lowing steps:

e Query Request: The process begins when a query request

is sent from the Server Cluster to the Centralized Sched-
uler.

o Docker Info: The Server Cluster sends Docker-related in-
formation to the Centralized Scheduler, providing details
about the containerized environment.

e Model Inputs: The Centralized Scheduler processes this
information and sends the relevant model inputs to the
Prediction Server, which utilizes CNN and XGBoost
technologies.

e Predictions: The Prediction Server returns predictions
back to the Centralized Scheduler. These predictions
include the end-to-end latency and probability of QoS
violations.

e Resource Allocations: Based on the predictions received,
the Centralized Scheduler makes decisions about resource
allocation and sends these instructions back to the Server
Cluster.

The system architecture is illustrated in Figure [T}

Server Cluster
E A % @Query request -
r—;l\ @ Docker info E
— K
Resource
allocations

Prediction
Server

Fig. 1: System Architecture of Sinan.

Data Collection: Sinan consists of a Convolutional Neural
Network (CNN) model for predicting short-term tail latency
and a Boosted Trees (BT) model for predicting the probability
of Quality of Service (QoS) violations in the long term.
The CNN handles immediate predictions, and the BT model
addresses future QoS violations, enabling Sinan to adjust
resources accordingly to meet QoS requirements.

Sinan employs a data collection agent to gather training
data efficiently. The collected data includes historical resource
utilization and performance metrics, which are used to train
the machine learning models. This data collection process
is guided by an algorithm designed to explore the resource
allocation space effectively, focusing particularly on boundary
regions where QoS violations may arise. Here

o Xprp represent the resource usage history (a 3D tensor)

o X represent the latency history (a 2D matrix)

o Xpco represent the resource configuration for the next
timestep (a 2D matrix)

The data collection process continuously monitors resource
utilization (e.g., CPU, memory, network usage) and latency
over time. This historical data is crucial for training the CNN
and BT models.

Convolutional Neural Network (CNN) Model: The CNN
model is designed to predict the end-to-end tail latency (yr.)
for the next timestep, given the resource utilization history, la-
tency history, and the resource allocation for the next timestep.
The input to the CNN consists of the following components:

The CNN processes this input through several convolutional

layers, which learn dependencies between the microservice

tiers over the time window. The output of the convolutional
layers is a latent representation Ly, which is then passed
through fully-connected layers to predict the tail latency yy,
for the next timestep.

The output is the predicted end-to-end tail latency for the
next timestep:

yr, = CNN(Xgrw, Xru, XrC)

Boosted Trees (BT) Model: The BT model is used to predict
the probability of a QoS violation (py) further into the future.
This is a binary classification problem, where the BT model
predicts the likelihood of a QoS violation occurring based on
the latent representation Ly generated by the CNN and the
resource allocation for the next k timesteps.

Let:

Ly represent the latent variable extracted by the CNN,

The BT model outputs the probability of a QoS violation
py at timestep k:

pv =BT(Ls, Xre)

Prediction and Resource Adjustment: At runtime, Sinan
uses the predictions from both models to dynamically adjust
the resources allocated to each microservice to maintain QoS:

« The CNN model predicts the immediate latency yp, for the
next timestep, which is used to adjust resource allocation
to minimize latency.

o The BT model predicts the probability of a QoS violation
py for a given resource configuration over the next k
timesteps.

Figure [2| illustrates the hybrid model of Sinan.

Fig. 2: Sinan’s hybrid model

The two-stage approach in Sinan, combining CNN for short-
term latency prediction and BT for long-term QoS violation
prediction, allows for efficient and accurate resource manage-
ment in cloud microservices. The system adjusts resources
dynamically based on real-time predictions, and retrains its
models to adapt to changing application scenarios, ensuring
the optimization of both performance and resource efficiency.

To further enhance its performance, Sinan incorporates
several advanced methodologies:

Resource Allocation Space Exploration: Sinan utilizes a
Multi-Armed Bandit (MAB) process for resource allocation

exploration, with a balance factor of o = 20%. This allows
efficient exploration of configuration spaces to identify optimal
allocations.

Online Scheduler: The scheduler dynamically adjusts re-
sources with actions such as:

o Scale down -1: Reduce resources by one unit.

e Scale down to least of k rounds: Gradually reduce
resources to the minimum observed configuration over
k rounds.

e Hold: Maintain the current allocation.

o Scale-up +1: Incrementally increase resources by one
unit.

e Scale-up all: Significantly increase resources across all
tiers.

o Scale-up victims: Allocate additional resources to tiers
with the most significant QoS violations.

Transfer Learning: Sinan employs transfer learning tech-
niques to leverage knowledge from a local cluster to optimize
resource allocation in the cloud environment, enhancing gen-
eralization and adaptability.

Results: Sinan demonstrates a significant improvement in
performance compared to existing methods. Specifically, it
achieves a 25.9% — 59.0% improvement in resource efficiency
and QoS maintenance over PowerChief [22]] and AWS Au-
toScaleOpt.

C. AutoThrottle

Autothrottle is a bi-level learning-assisted framework de-
signed for resource management in microservice applications
with Service Level Objective (SLO) guarantees. The frame-
work consists of two components: a global controller called
Tower and per-service controllers named Captains. The Tower
utilizes contextual bandits, a lightweight form of online rein-
forcement learning, to determine suitable performance targets
based on observed workloads, CPU allocations, and end-to-end
latencies. These targets are communicated to the Captains as
CPU throttle ratios. Autothrottle implements the performance
target with CPU throttle ratio - the fraction of time a microser-
vice is stopped by the underlying CPU scheduler. A low CPU
throttle ratio indicates underutilization, whereas a high throttle
ratio suggests overutilization. The design is motivated by a
strong correlation between CPU throttle and service latencies
revealed by their correlation test.

Autothrottle’s bi-level design decouples application-level
SLO feedback from low-level resource control by delegating
fine-grained resource adjustments to Captains. This architec-
ture reduces the complexity of global decision-making and
avoids the overhead of aggregating resource metrics while
enabling rapid responses to dynamic workload fluctuations.
Figure [3] illustrates the top level system architecture.
Per-service controllers - Captains: The Captain is the per-
service controller responsible for dynamically scaling CPU
resources for microservices to meet the target CPU throttle
ratio assigned by the Tower. By continuously monitoring
CPU metrics and adjusting quotas in response to workload

CPU allocation | : performance target

SLO\I(p (Tower) .
¥ S—

Tower (§3.3) ; ﬁl
Captain (§3.2) throttle,
RPS, N usage
fafeﬂcy]\ ' quoia
=
Gateway E

Fig. 3: Autothrottle System Diagram

changes, the Captain ensures efficient resource utilization
while preventing Service Level Objective (SLO) violations.

Each Captain operates in periodic intervals, typically N
Continuous Fair Scheduler (CFS) periods, where it gathers
resource metrics and makes decisions on whether to scale up
or down the CPU allocation. The control logic is based on
CPU throttle ratio measurements, CPU usage statistics, and
a dynamically adjusted margin parameter to prevent resource
overreaction.

The decision-making process of Captain comprises the
following components:

o Multiplicative Scale-Up: When the measured CPU throt-
tle ratio exceeds a defined threshold (« x the target ratio),
Captain increases the CPU quota proportionally to the
difference between the measured and target ratios. This
approach ensures that under-provisioned microservices
rapidly receive additional resources to handle demand
surges, thereby avoiding potential SLO violations.

« Instantaneous Scale-Down: When the CPU throttle ratio
is below the target, Captain leverages historical CPU
usage over the most recent M periods to propose a
new CPU quota. The proposed quota is calculated as the
maximum CPU usage plus a dynamically tuned margin
times the standard deviation of usage. This approach
helps reclaim excess CPU allocation while avoiding un-
necessary fluctuations.

o Rollback Mechanism After Scaling Down: Since ac-
cidental CPU scale-downs can result in SLO violations,
Captain implements a fast rollback mechanism. Follow-
ing each scale-down, Captain monitors the throttle ratio
during every period within the next N periods. If the ratio
exceeds the ax target threshold, Captain immediately
restores the previous higher quota and adds an additional
allocation to compensate for potential delays caused by
the erroneous scale-down.

Algorithm 1 and Algorithm 2 outline the Captain’s scaling
and rollback operations in detail. These algorithms ensure that
the system can efficiently adapt to changing workloads while
maintaining reliable and responsive service behavior.
Application-level controller - Tower: In Autothrottle, the
Tower serves as the global controller responsible for com-
puting and dispatching target CPU throttle ratios for each
microservice. These target ratios act as guidelines for the

Algorithm 1 Captain: scaling up and down

> executes every N periods

1: throttleCount < throttle count during last N periods

2: throttleRatio « throttleCount//N

3: margin < max (0, margin + throttleRatio — throttleTarget)

4: if throttleRatio > ax throttleTarget then
> multiplicatively scale up

5: quota <« quota x(1+ throttle.Ratio —ax
throttle Target)

6: else

> instantaneously scale down
7 history <— CPU usage history in the last M periods

8: proposed < max(history) + margin x stdev(history)
9: if proposed < S X quota then

10: quota <+ max(Smin X quota, proposed)

11: end if

12: end if

Algorithm 2 Captain: rollback mechanism

> executes every period for N periods after each scale-
down

lastQuota <— CPU quota before scale-down
throttleCount < throttle count since scale-down
throttleRatio < throttleCount//N

if throttleRatio > ax throttleTarget then

> revert to the previous (higher) quota before scale-down
> with an additional allocation equal to the quota differ-
ence

5: quota < lastQuota + (lastQuota — quota)

: margin < margin + throttleRatio — throttleTarget

7: end if

BN

per-service Captains, enabling them to make in-situ resource
adjustments. By delegating resource control to Captains, the
Tower avoids the latency overhead typically associated with
distributed tracing and logging while maintaining a global per-
spective on application-level Service Level Objective (SLO)
compliance and resource usage.

The Tower operates at a lower frequency compared to
Captains, typically updating target throttle ratios once every
minute. This longer interval allows tail request latencies and
average CPU usage to stabilize after resource adjustments,
thus simplifying decision-making into a ’one-step” problem.
Unlike full-fledged reinforcement learning (RL) approaches
that must account for long-term consequences, the Tower only
needs to compute the optimal CPU throttle targets for the
current interval, without considering historical decisions.

Given this “one-step” nature, the Tower employs contextual
bandits, a lightweight and efficient class of online reinforce-
ment learning algorithms that excel at decision-making in sce-
narios where each action’s impact is confined to the immediate
outcome.

1) Primer on Contextual Bandits: Contextual bandits are
well-suited for real-time decision-making in resource manage-

ment scenarios. Similar to multi-armed bandits, they focus on
selecting the best action at each step to minimize cumulative
cost. However, they differ by considering the system’s current
state, known as the context, to inform decisions.

Contextual bandits are more lightweight than full RL al-
gorithms, as they do not require extensive offline training
or frequent retraining. Instead, they learn incrementally from
observed data, making them ideal for online learning in
dynamic environments.

A common approach for solving contextual bandit problems
is to train a cost-prediction model that estimates the cost
of taking each action within a given context. Due to the
partial observability of contextual bandits (only the cost of the
selected action is observed), counterfactual estimation tech-
niques are often employed to estimate the costs of unselected
actions, improving sample efficiency and decision accuracy.

2) Realizing Contextual Bandits in Tower: The Tower’s
contextual bandit algorithm operates with a step size of one
minute, aiming to select the action that incurs the lowest cost
given the observed context.

a) Context: The Tower selects the average Requests Per
Second (RPS) observed during the last interval as the context.
This choice is motivated by the strong correlation between
RPS and the optimal CPU throttle target. Other metrics, such
as CPU usage, are excluded from the context as they are
merely byproducts of applying a throttle target to an RPS.

b) Action Space: The Tower searches for a ladder of
CPU throttle targets as potential actions. By default, the action
space consists of nine throttle targets, ranging from 0 to 0.3.

c) Reduction of Action Space: Microservice-based appli-
cations can contain thousands of services, leading to a com-
binatorially large action space if each service were assigned
a unique throttle target. To address this, the Tower clusters
microservices into two classes based on their average CPU
usage and assigns an action to each class, reducing the action
space to 81 possible combinations. The k-means clustering
algorithm is employed for this purpose.

d) Cost Function: The cost function used by the Tower
is defined as follows:

When the SLO is met, the cost is based solely on the total
CPU allocation, normalized linearly to the range [0, 1].

When the SLO is violated, the cost is based solely on the
tail latency, normalized to the range [2, 3] to emphasize the
higher priority of SLO violations.

The choice of these normalization ranges is empirically
validated, although they may not represent the optimal con-
figuration.

e) Noise Reduction for Costs: To address the high noise
in cost measurements, the Tower buffers recent samples and
groups them based on the context and action. When a new
sample is observed, the median cost of its group is used for
model updates, significantly reducing noise and stabilizing the
learning process.

f) Exploration Strategy: To balance exploration and ex-
ploitation, the Tower employs a neighbor-based exploration
strategy. Given a sorted ladder of CPU throttle targets r; <

rg < ... < ry, if the best action is (r5,7;), the neighbors
(Ti,Tj_l), (T‘Z‘, Tj-i-l)» (7‘1‘_1, ’I“j), and (’I“H_l,?“j) are explored
with equal probability, subject to boundary conditions. This
approach ensures efficient exploration without compromising
the learning process.

By adopting contextual bandits and the design choices out-

lined above, the Tower achieves lightweight, real-time resource
management for microservice applications, minimizing CPU
allocations while ensuring SLO compliance.
Results: Autothrottle achieves significant CPU resource sav-
ings while consistently maintaining application SLOs across
different workloads. In Social-Network, it saves up to 49.85%
(49.7 cores) over K8s-CPU-Fast and 25.93% (17.5 cores)
over K8s-CPU, achieving a P99 latency of 178 ms with only
77.5 cores. In comparison, K8s-CPU requires 115.5 cores for
177 ms latency, and K8s-CPU-Fast requires 93.9 cores for
171 ms. For Hotel-Reservation, where requests traverse only
three microservices, the resource savings are less pronounced
due to the application’s simplicity. In a 21-day real-world
evaluation using Social-Network on a 160-core cluster, Au-
tothrottle achieves an average CPU saving of 12.1 cores per
hour compared to K8s-CPU, with a peak saving of 35.2 cores.
Additionally, it drastically reduces SLO violations, recording
only 5 instances compared to K8s-CPU’s 71 violations. On a
large-scale 512-core cluster, Autothrottle demonstrates up to
28.24% (150 cores) savings over K8s-CPU and at least 5.92%
(24 cores) over K8s-CPU-Fast while keeping P99 latency
within the 200 ms SLO limit. These numbers underscore
Autothrottle’s efficiency in CPU allocation and application
performance stability.

III. AUTOLIMIT METHODOLOGY AND IMPLEMENTATION

In this section, we provide our methodology to incorporate
memory feature in Autothrottle and implementation details.

A. AutoLimit

The motivation for our work involves a limitation of Au-
tothrottle. In their implementation the pod is created without
any memory limits specified. The pod may use the node’s full
memory capacity without restrictions. This phenomemom can
be observed by checking the ‘memory_limit_in_bytes‘ value
in the ‘sys/fs/cgroup/memory* folder. In their implementation,
the memory limit is set to 9223372036854771712 which is
the page size used in Linux. It means "no memory limit” is
set. We applied a heuristics based rule to auto scale-up and
scale-down this memory.

Our methodology introduces dynamic memory management
to Autothrottle by implementing a watermark-based scaling
system. The CaptainScaler class monitors pod memory usage
against configurable watermarks (90% high, 70% low) and
adjusts limits accordingly. When memory usage exceeds the
high watermark, the system increases the memory limit by
factoring in a 30% headroom buffer (memory_headroom =
1.3) to prevent resource contention. Conversely, when usage
falls below the low watermark, the limit is reduced to optimize
resource utilization. The system enforces a minimum memory

threshold of 64MB and requires a difference of at least IMB
before applying limit changes, preventing rapid oscillations.
This approach ensures efficient memory utilization while pro-
tecting against unbounded consumption that could occur in the
original Autothrottle implementation.

B. Implementation

We evaluated our implementation in two different cloud
environments: Microsoft Azure and Cloud Lab BUET. In the
Azure setup, we used a 6-core cluster (3x 2-core VMs). The
three VMs each featured a 2-core Azure B2als_v2 (AMD)
processor and 4 GB RAM. For resource provisioning, we used
Terraform. In our Cloud Lab BUET setup, we utilized three
virtual machines running Ubuntu 22.04.5 LTS (x86_64) on
OpenStack Nova 27.4.0. Each VM was equipped with an Intel
Xeon (Icelake) processor with 32 cores at 2.0 GHz and ap-
proximately 126 GB of memory (128805 MiB). We configured
VM1 as the control plane node and designated VM2 and VM3
as worker nodes. The VMs were equipped with Virtio GPU
for basic display capabilities. Much effort went into updating
the codebase of Autothrottle from Kubernetes version v1.20
to v1.32. The Captain and Tower implementation, workload
generation, and evaluation were performed using Python. We
also have a Bash script to streamline the entire setup and
evaluation process. The complete implementation can be found
at https://github.com/hmasum52/autoalloc.

IV. EVALUATION

In this section, we explain the methodology used for eval-
uation and present the results obtained from experiments.

A. Methodology

We deploy an SLO-targeted microservice application, Hotel-
Reservation, from DeathStarBench [23]]. This application is
representative of real-world microservices, with stateless ser-
vices (e.g., business logic), data services (e.g., key-value
stores), and gateways. In Appendix [A] we list the services.
Deployments are managed by Docker and Kubernetes. Parent-
child service communications are through popular RPC frame-
works such as gRPC and Thrift.

We generate workloads with Locust [24], which is config-
ured to mix application requests to stress as many services
as possible. Locust replays workload traces to reproduce
RPS (requests per second). The first set of traces captures
hourly RPS patterns, commonly observed in production envi-
ronments: Puffer’s streaming requests [25], Google’s cluster
usage [260], and Twitter tweets [27]. We used four types of
workloads: diurnal, constant, noisy, and bursty. A diurnal
workload follows a daily cycle, peaking during specific times
of the day, such as web traffic that rises during the daytime
and falls at night. A constant workload remains steady, with no
fluctuations over time, like consistent data processing rates. A
noisy workload is marked by random, unpredictable variations
in demand, often due to external disruptions. Finally, a bursty
workload consists of brief periods of intense activity, followed
by quieter intervals, commonly seen in events like flash sales.

To reduce Microsoft Azure costs and experiment duration, we
set the duration to 3 minutes and reduced the RPS by a factor
of 100. Figure [] illustrates these patterns.

Vizualization of Resampled Diurnal Workload

p —— 3 minutes workload (180 points)

RPS

M\t

(a) Diurnal Workload

Visualization of Resampled Constant Workload

210.0

207.5

205.0

202.5

RPS

200.0

197.5

195.0

1925

3 minutes worklaad (180 points)
190.0

0.0 05 10 15 2.0 2.5 30

(b) Constant Workload

Vizualization of Resampled Noisy Workload

—— 3 minutes workload (180 points}

TR - rﬁ
- e

(c) Noisy Workload

Vizualization of Resampled Bursty Workload

/

— 3 minutes workload (180 points}

RPS
]
8

150 \

00 05 10 15 2.0 25 30
Time (minutes)

L/

(d) Bursty Workload

Fig. 4: Workload Types: Diurnal, Constant, Noisy, and Bursty

https://github.com/hmasum52/autoalloc

Comparison of CPU Allocation Across Workload Types

0.59

o
IS

o
W

CPU Allocation (cores)

o
N

0.14

0.0+

o o o o
N W w >
@ S @ S

o
o
@

CPU Allocation (cores)
o
N
5]

0.10 1

CPU Allocation (cores)

° ° ° o ° ° ° °
o [= Y N @ @ =
3 5 & 5 b 3] 5

o
o
5]

Diurnal

EE Autothrottle

B K8s-CPU-Fast

Constant Noisy
Workload Type

Fig. 5: Experiment 1 Result

Comparison of CPU Allocation Across Workload Types

K8s-CPU

Bursty

Emm Autothrottle
K8s-CPU
mmm K8s-CPU-Fast

Diurnal

Bursty
Workload Type

Fig. 6: Experiment 2 Result

Comparison of CPU Allocation Across Workload Types

EEm Autothrottle
K8s-CPU
Bl K8s-CPU-Fast

Diurnal

Bursty
Workload Type

Fig. 7: Experiment 4 Result

B. Results

1) Reproduce original paper: We attempted to reproduce
the results from the original Autothrottle paper through three
experiments with varying training configurations. The goal
was to demonstrate Autothrottle’s ability to achieve efficient
resource utilization compared to Kubernetes’ Vertical Pod
Autoscaler (K8s-CPU and K8s-CPU-Fast). In Experiment 1
(Figure [5), we set an SLO of 100ms P99 latency with
minimal training: 2 warm-up periods (1 random exploration,
1 normal learning) and a duration of 1 hour 55 minutes.
The results show Autothrottle using higher CPU allocations
(approximately 0.42 cores) compared to K8s approaches. This
suboptimal performance can be attributed to insufficient train-
ing time (online learning), which prevents Autothrottle from
learning optimal resource allocation patterns. Experiment 2
(Figure [6) incorporated improved training parameters: a more
relaxed SLO of 2s P99 latency, extended warm-up period of
6 cycles (3 random, 3 learning), and a duration of 1 hour 57
minutes. With this configuration, we observed Autothrottle’s
intended behavior in the bursty workload pattern, where it
achieved lower CPU allocation (0.3 cores) compared to both
K8s-CPU (0.33 cores) and K8s-CPU-Fast (0.32 cores). This
demonstrates that with proper training, Autothrottle can learn
to allocate resources more efficiently. In Experiment 4 (Figure
[7), we further extended the training parameters with 8 warm-
up cycles (4 random, 4 learning) and a longer duration of 3
hours 10 minutes, maintaining the 2s P99 latency SLO. For
diurnal workloads, while Autothrottle showed higher alloca-
tions, it demonstrated improved efficiency in bursty workloads
with an allocation of 0.35 cores compared to K8s-CPU’s
0.4 cores. These experiments highlight the crucial role of
proper training in Autothrottle’s performance. While our initial
experiment with limited training showed suboptimal results,
extended training periods in subsequent experiments enabled
Autothrottle to achieve its designed goal of more efficient
resource utilization, particularly in bursty workload scenarios.
This underscores the importance of adequate training time and
appropriate SLO settings for Autothrottle to effectively learn
and optimize resource allocation patterns.

2) Memory Management Results: We evaluated our pro-
posed AutoLimit memory management system against the
original Autothrottle implementation. While Autothrottle
doesn’t set any memory limit, we used a fixed predefined
memory limit of 256 MB to compare with our approach of
dynamic memory scaling based on actual usage patterns. In
our implementation, we added detailed logging of memory-
related metrics. The logs capture CPU limits, memory usage,
memory limits, and memory usage ratios at each adjustment
interval. To analyze these logs, we used regex-based parsing
as shown below in Appendix [B] The results are detailed in
Table [l

Our analysis of memory allocation logs from two worker
nodes across multiple experimental runs highlights the effec-
tiveness of our heuristics-based scaling system in optimizing
resource utilization.

TABLE I: Comparison of Memory Limits and Savings (Initial memory limit

CPU management strategy—could enhance efficiency, po-
tentially incorporating online learning techniques for more

256 MB)

VM Average Memory Limit | Memory Limit Saving
Worker-2 (Exp 1) 101.77 MB 60.2%
Worker-3 (Exp 1) 126.49 MB 50.5%
Worker-2 (Exp 2) 79.91 MB 72.3%
Worker-3 (Exp 2) 125.10 MB 51.1%

As Autothrolle’s implementation was done for cgroup ver-
sion one, in the initial experiments, use used two worker
node (with ubuntu 20.04 LTS) both having cgroup version
one which provides the metrics memory.usage_in_bytes and
memory.limit_in_bytes. We utilized this two available metrics
to update the limit dynamically based on memory usage. In our
experiment, Worker Node 2 maintained an average memory
limit of 101.77MB, while Worker Node 3 averaged 126.49MB.
These allocations resulted in significant memory savings of
60.2% and 50.5%, respectively, compared to Autothrottle’s
fixed 256MB allocation.

As latest version of ubuntu comes with cgroup vesion
2 which have the metrics memory.current (equivalent to
memory.usage_in_bytes) and memory.max (equivalent to mem-
ory.limit_in_bytes) we migrate our code to use these two
metrics for our dynamic memory limit changing. For our sec-
ond experiment, we used worker node having cgroup version
two (ubuntu 22.04 LTS). In the second set of experiments,
Worker Node 2 exhibited an even lower average memory limit
of 79.91MB, while Worker Node 3 remained consistent at
125.10MB. The corresponding memory savings increased to
72.3% and 51.1%, reinforcing the efficiency of our approach.
The variation in memory limits between worker nodes ("80MB
to 126MB) illustrates our system’s adaptability to fluctuating
workload patterns and resource demands. This dynamic scal-
ing capability represents a substantial advancement over Au-
tothrottle’s rigid 256MB allocation, enabling memory savings
of up to 72.3%. Crucially, these optimizations are achieved
without degrading application performance, ensuring that each
node receives precisely the resources it requires.

V. CONCLUSION

In this paper, we presented AutoLimit, an extension of
Autothrottle that introduces dynamic memory management
for microservices while maintaining SLO compliance. Our
implementation demonstrated significant memory savings, re-
ducing allocation by 50.5% to 72.3% compared to Autothrot-
tle’s static allocation approach. Through a heuristics-based
scaling system with configurable high and low thresholds,
AutoLimit effectively balances resource efficiency with perfor-
mance requirements. The system’s ability to maintain consis-
tent performance while significantly reducing memory usage
validates our approach to dynamic resource management.
Several promising directions exist for future work. These in-
clude extending evaluations with longer-duration and memory-
intensive workloads to better understand the system’s behavior
under sustained pressure. Additionally, developing a bi-level
approach for memory management—similar to Autothrottle’s

sophisticated threshold adjustments.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

REFERENCES

H. Zhou, M. Chen, Q. Lin, Y. Wang, X. She, S. Liu, R. Gu, B. C. Ooi,
and J. Yang, “Overload control for scaling wechat microservices,” in
Proceedings of the ACM Symposium on Cloud Computing, 2018, pp.
149-161.

S. Luo, H. Xu, C. Lu, K. Ye, G. Xu, L. Zhang, Y. Ding, J. He,
and C. Xu, “Characterizing microservice dependency and performance:
Alibaba trace analysis,” in Proceedings of the ACM Symposium on Cloud
Computing, 2021, pp. 412-426.

A. Gluck, “Introducing domain-oriented microservice architecture,”
Uber Engineering Blog, p. 45, 2020.

G. Santoli, “Microservices architectures: Become a unicorn like netflix,
twitter and hailo,” Presentation Slides, Mar, vol. 31, 2016.

J. Cloud, “Decomposing twitter: Adventures in service-oriented archi-
tecture,” QCon New York, 2013.

D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis,
“Towards energy proportionality for large-scale latency-critical work-
loads,” ACM SIGARCH Computer Architecture News, vol. 42, no. 3, pp.
301-312, 2014.

S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tu-
manov, J. Yaniv, R. Mavlyutov, I. Goiri, S. Krishnan, J. Kulkarni et al.,
“Morpheus: Towards automated {SLOs} for enterprise clusters,” in 12th
USENIX symposium on operating systems design and implementation
(OSDI 16), 2016, pp. 117-134.

P. Ambati, I. Goiri, F. Frujeri, A. Gun, K. Wang, B. Dolan, B. Corell,
S. Pasupuleti, T. Moscibroda, S. Elnikety e al., “Providing {SLOs}
for {Resource-Harvesting } { VMs} in cloud platforms,” in 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), 2020, pp. 735-751.

C. Jorgulescu, R. Azimi, Y. Kwon, S. Elnikety, M. Syamala,
V. Narasayya, H. Herodotou, P. Tomita, A. Chen, J. Zhang et al.,
“{Perflso}: Performance isolation for commercial {Latency-Sensitive}
services,” in 2018 USENIX Annual Technical Conference (USENIX ATC
18), 2018, pp. 519-532.

S. A. Javadi, A. Suresh, M. Wajahat, and A. Gandhi, “Scavenger: A
black-box batch workload resource manager for improving utilization in
cloud environments,” in Proceedings of the ACM symposium on cloud
computing, 2019, pp. 272-285.

D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” in Proceedings of the
42nd Annual International Symposium on Computer Architecture, 2015,
pp. 450-462.

Y. Wang, K. Arya, M. Kogias, M. Vanga, A. Bhandari, N. J. Yadwadkar,
S. Sen, S. Elnikety, C. Kozyrakis, and R. Bianchini, “Smartharvest:
Harvesting idle cpus safely and efficiently in the cloud,” in Proceedings
of the Sixteenth European Conference on Computer Systems, 2021, pp.
1-16.

Y. Zhang, i. Goiri, G. I. Chaudhry, R. Fonseca, S. Elnikety, C. De-
limitrou, and R. Bianchini, “Faster and cheaper serverless computing
on harvested resources,” in Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, 2021, pp. 724-739.

Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou, “Sinan: MI-
based and qos-aware resource management for cloud microservices,”
in Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS °21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 167-181. [Online]. Available:
https://doi.org/10.1145/3445814.3446693

K. Fu, W. Zhang, Q. Chen, D. Zeng, and M. Guo, “Adaptive resource
efficient microservice deployment in cloud-edge continuum,” [EEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 8, pp.
1825-1840, 2022.

Z. Zhou, Y. Zhang, and C. Delimitrou, “Aquatope: Qos-and-
uncertainty-aware resource management for multi-stage serverless
workflows,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 1, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1-14. [Online].
Available: https://doi.org/10.1145/3567955.3567960

https://doi.org/10.1145/3445814.3446693
https://doi.org/10.1145/3567955.3567960

[17] Z. Wen, Y. Wang, and F. Liu, “Stepconf: Slo-aware dynamic resource
configuration for serverless function workflows,” in IEEE INFOCOM
2022 - IEEE Conference on Computer Communications, 2022, pp. 1868—
1877.)

[18] S. Luo, H. Xu, K. Ye, G. Xu, L. Zhang, J. He, G. Yang, and .reservat'on
C. Xu, “Erms: Efficient resource management for shared microservices
with sla guarantees,” in Proceedings of the 28th ACM International .DrOfl[e
Conference on Architectural Support for Programming Languages and 1096
Operating Systems, Volume 1, ser. ASPLOS 2023. New York, NY, ‘recommendation
USA: Association for Computing Machinery, 2022, p. 62—77. [Online]. .rate ‘geo
Available: https://doi.org/10.1145/3567955.3567964

[19] J. Park, B. Choi, C. Lee, and D. Han, “Graf: a graph neural
network based proactive resource allocation framework for slo-oriented Fig. 8: Services in hotel reservation microservice
microservices,” in Proceedings of the 17th International Conference on
Emerging Networking EXperiments and Technologies, ser. CONEXT ’21.

New York, NY, USA: Association for Computing Machinery, 2021, p.

154-167. [Online]. Available: https://doi.org/10.1145/3485983.3494866 o Master Node (autothrottle-1):

[20] M.. R. Hpssen, M. A Isla.m, and K. Ahmed, .“Practical t?fﬁcient — Kubernetes control plane only
microservice autoscaling with qos assurance,” in Proceedings of
the 31st International Symposium on High-Performance Parallel and o Worker Node 1 (autothrottle-2):
Distributed Computing, ser. HPDC °22. New York, NY, USA: — Consul
Association for Computing Machinery, 2022, p. 240-252. [Online].
Available: https://doi.org/10.1145/3502181.3531460 - Jaeger

[21] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer, “Firm: — Frontend

an intelligent fine-grained resource management framework for slo-

— Profile service stack (service + MongoDB + mem-
oriented microservices,” in Proceedings of the 14th USENIX Conference (g

on Operating Systems Design and Implementation, ser. OSDI’20. USA: cached)

USENIX Association, 2020. — Rate service stack (service + MongoDB + mem-
[22] H. Yang, Q. Chen, M. Riaz, Z. Luan, L. Tang, and J. Mars, “Powerchief: cached)

Intelligent power allocation for multi-stage applications to improve . . .

responsiveness on power constrained cmp,” in Proceedings of the 44th — Reservation service stack (service + MongoDB +

Annual International Symposium on Computer Architecture, 2017, pp. memcached)

133-146.
[23] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, « Worker Node 2 (autothrottle-3):

J. Hu, B. Ritchken, B. Jackson et al., “An open-source benchmark suite — Geo service stack (service + MongoDB)

for microservices and their hardware-software implications for cloud
& edge systems,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and goDB)

Operating Systems, 2019, pp. 3-18. Search service

[24] Locust, “Locust: An open source load testing tool,” |https://locust.io, : :
2005, accessed: 2025-02-04. User service stack (service + MongoDB)

[25] F Y. Yan,' H Aye‘r‘s, C .Zhu,‘ S."Fo.u’ladl, J. H_ong, K. Zl_lang, P L§v1s, APPENDIX B
and K. Winstein, “Learning in situ: a randomized experiment in video
streaming,” in 17th USENIX Symposium on Networked Systems Design MEMORY IMPLEMENTATION RESULT CALCULATION
and Implementation (NSDI 20), 2020, pp. 495-511. Experiment Set 1
[26] J. Wilkes, “Google cluster data — 2019 traces,” https://github.com/ p
google/cluster-data/blob/master/ClusterData2019.md, 2020, accessed: Worker node 2:
2025-02-04.
[27] Twitter, “Twitter data for academic research,” https://developer.twitter. $ ggrep —-obP " “\d{2}:\d{2}:\d{2}
com/en/use-cases/do-research/academic-research/resources, 2022, ac- captain_scaler:
cessed: 2022-01-01.

Recommendation service stack (service + Mon-

new memory limit \K[\d.]+"
APPENDIX A worker—-daemon-worker-2.1log |
HOTEL RESERVATION BENCHMARK awk ' { sum += $1 }
END { print "Average = ", sum/NR }’

Services: Total Services: 17 > Average = 101.768

Workload details: Search: 60%, Recommend: 39%, Re- Worker node 3:

server: 0.5% R Login: 0.5% $ ggrep -oP u'*\d{z} :\d{2} Z\d{Z}

captain_scaler:
High CPU Usage Group: Low CPU Usage Group: pney memory limit \K[\d.]+"

« Frontend + Memcached (3) worker—-daemon-worker-3.log |

¢ Geo + Mongodb (6) awk " { sum += $1 }

« Profile e Consul END { print "Average = ", sum/NR }’
o Rate o Jaeger > Average = 126.494

e Reservation .

+ Search Experiment Set 2

Worker node 2:

Distribution of Services in Different VMs S ggrep —-oP "captain_scaler:

https://doi.org/10.1145/3567955.3567964
https://doi.org/10.1145/3485983.3494866
https://doi.org/10.1145/3502181.3531460
https://locust.io
https://github.com/google/cluster-data/blob/master/ClusterData2019.md
https://github.com/google/cluster-data/blob/master/ClusterData2019.md
https://developer.twitter.com/en/use-cases/do-research/academic-research/resources
https://developer.twitter.com/en/use-cases/do-research/academic-research/resources

new memory limit \K[\d.]+"
worker—-daemon-worker-2.1log |

awk ’{ sum += $1 }

END { print "Average = ", sum/NR }’
> Average = 79.9068

Worker node 3:

$ ggrep -oP "captain_scaler:

new memory limit \K[\d.]+"
worker—-daemon-worker-3.1log |

awk 7 { sum += $1 }

END { print "Average = ", sum/NR }’
> Average = 125.102

	Introduction
	Background and Related Work
	Kubernetes Default Autoscalers
	Sinan
	AutoThrottle
	Primer on Contextual Bandits
	Realizing Contextual Bandits in Tower

	AutoLimit Methodology and Implementation
	AutoLimit
	Implementation

	Evaluation
	Methodology
	Results
	Reproduce original paper
	Memory Management Results

	Conclusion
	References
	Appendix A: Hotel Reservation Benchmark
	Appendix B: Memory Implementation Result Calculation

